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3. 1. Gaz partaits
Revenons dans ce chapitre (etpour les suivants (

à une approche macroscopique et phénoménologique .

Les systemes qu'on considère sont fermés .

3.1
.
1. Hypothèses du gaz parfait

Rappel du chapitre 2 :

- gaz composé de molécules de dimension négligeable
en comparaison de la distance qui les sépare.

- les interactions entre molécules sont uniquement
de très courte portée ,

les collisions sont

élastiques /conservation de la quantité de mouvement
et de l'énergie cinétique).

- à l'équilibre , les composantes des positions
et vitesses i" sont distribuées au hasard
Con a vu que les vitesses suivent la loi de

distribution de Maxwell-Boltz mann)



En pratique, on appelle gaz partait l'état idéal

vers lequel tendent tous les gaz lorsque leur

densité est faible. On parle de gaz dilue .

21 n'y a pas d'interaction entre molécules dans

le gaz.

= U = f(T)
L'énergie interne n'est fonction que de

T

.

3.1
.
2. Approche historique

Historiquement, les trois variables d'état P
,
VetT

avaient été identifiées et des experiences out
été faites en gardant un paramètre constant

et en mesurant l'évolution relative des deux

autres.



Loi de Boyle et Mariolte (1662/1676)

Expérience dans un cylindre qui contient un gaz
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Loi de Charles (1787)
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Loi de Gay-Lussac (1802)
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T= -273
.
15

%

C est le zéro absolu de température .

Cette température correspond à l'absence totale

d'énergie thermique.
En prenant cette origine pour la temperature ,

on

peut définir la température absolue :

Tabsolve = T(o] + 273
.
15

- linéaire

1P[Pa]
V1

Avec cette définition :

Dour V constant : S VaU1

V3>Vz

p = J .Tabsolue
constante

A >
-273.15 [k]Tabsolve

Dans la suite, on notera T = Tabsolue et l'unité

par défaut de la température est le Kelvin [K].



Loi d'Avogadro (1811)

Si V
, petT sont constants

nombre de mole
↓

= n est constant et indépendant du gaz

Grandeur utile à connaitre : A des conditions normales

de température et de pression (CNTP : T= 02

et p = 1 atm(
↓
le volume d'une mole de

gaz parfait est indépendant du gaz et

vart Unzmole = 22
.
3 litres ou 2

.24 .102 m3



En mettant ensemble les lois :

Tabsolve
Loi de Boyle-Mari otte ↓

Loi de Charles pV= T
Loi de Gay-Lussac3 constante

Combiné avec la loi d'Avogadro :

pV = nRT

Avec R la constante des gaz partaits
R= 8

,
314 IKmot

1

& est indépendante du gaz partait .



3. 1.3. Loi de Dalton (1801)

Définition de la pression partielle :

La pression partielle d'un gaz dans un mélange

gazeux est la pression qu'il exercerait s'il occupait
seul tout le volume du mélange, à la même

température.

Soit un volume V à température constante contenant

le mélange de deux gaz parfaits :

gaz 1 (pr, Me, V ,
T) => pV = nRT

gazz (P2
, n2,

V
,
T) = PrV = nzRT



· Le melange des deux gaz parfaits forme

un gaz partait dans le volumeV

température T tel que
n = n1 +12

p = p1 + Pz

avec p, et p2 les pressions partielles .

Loi de Dalton

La pression d'un mélange de plusieurs
gaz partaits est la somme des pressions
partielles de chacon des gaz.



3
.

1
.
4. Diagramme P-V (diagramme de Clapeyron)

Gaz parfait : pV = nRT

=> P=T

Pr

&&&&&- Tocte

O >
V

Ce diagramme représente la pression du gaz en fonction

du volume. Les courbes tracées sont des isothermes

(T = cte) à différentes températures.



3.2. Gaz reels

3.2
.
1. Diagramme de Clapeyron pour un gaz réel

Mesure experimentale :

Pr
~gaz

partait

Scazea
· E

gaz rée,
>O Vmol,Là Psat Vmol,Gà Psat V/n volume

molaire

6
on le définit plus tard

· Pour Télevé (TxTc)
,
la pression suit plus or moins

celle d'un gaz partait 11 y a des différences qui
deviennent plus importantes pour les hautes pressions
ou pour les petits volumes.



Pr

taret

Palier de

TTc liquetaction

S
>O Vmol,Là Psat Vmol,Gà Psat V/nc- volume

molaire

·Pour TaTc
,

P ne suit plus du tout la courbe

d'un gaz partait. On observe également un

changement de phase gaz> liquide en

variant et P => A B : liquide
- B-> D : liquide + gaz
- D> E : gaz

On appelera fluide une substance qui peut être
soit un gaz , soit un fluide.



n
liquetaction
Palier de

⑳

gaz rée,
>O Vmol,Là Psat Vmol

,
Gapsat V/nc- volume

molaire

· Propriétés du palier de liquétaction entre BetD :

=> P = Psat est constant
,
c'est la pression de saturation

ou pression de vapeur
- Pour un point B'EJB, P[ :

saturante

il y a un mélange des deux phases :

liquide et gaz
* la traction de liquide a V = Vmol

,
LaPsat

la fraction de gaz a N= Vmol
,
Gapsat

* C'est la fraction de gaz et liquide qui n'est
pas constante sur le palier de liquétaction.



Pr
~gaz

partait

SePalier de

TTc liquetaction

S
>O Vmol,Là Psat Vmol

,
GaPsat V/nc- volume

molaire

Exemple pour B':P = Psat

VRfVmo
,
Gapsat

Là Tz
P = Psat

V = >Vmol
,
Lapsat



Pr

TzTobi
itaT

Vis
>O Vmol Là Psat Vmol

,
GaPsat V/nc- volume

/
molaire

Exemple pour B' : "
Pour un point B'E [B,

DJ
,

on veut connaitre la proportion
de liquide/gaz.
On définit la traction molaire de gaz ou liquide :

*
G

= A X=

avec n = neth

X = X -+X(= 1 =>X) = 1 - X6



Exemple pour Bill a
*

G
= A X=

avec n = neth

X = X -+X(= 1 =>X) = 1 - X6

Pour simplifier l'écriture écrivons :

VB= V à Psat VGDE Vo à PsatL

V = VaB V = VGBG
,Bi

Vi : Volume total à Bl

On utilise le fait que les volumes molaires des
deux phases restent constants sur le palier
de liquéfaction : en D

XenB enB' ↓ 2
en B'

b
Vmol

,
L

=V et mo
,=

NG

=> VB =ML et
VainGG



var
Pour un point B' sur le palier de liqué faction

,
le

volume totale VB'est :

On a : VB'YetVoi = ALVLGVG
= XVL

,
B+ (1 -X)VG
,

V = VgptX1 (VLB-VG
,
d)

=

X=V Relation linéaire pour
E la fraction molaire de

liquide ou gaz le long
du palier de liquetation.



3.2
.

2.
.Point critique

P
1

-XPo I
&

·

·

T=Tc

- TsTc

-
Liquide / & TCTcLiquide + Gaz-

Gaz

O Und( >

VIn

· T> Tc : Pas de changement de phase , le fluide
se comprime régulièrement en diminuant V.

· TCTc : Existence d'un palier de liquétaction avec

coexistence de liquide et gaz .

· T=Tc : Le palier de liquéfaction est un point C,
le point critique (pc

,
Vc

,
Tc).

L'isotherme en C possède un point d'inflexion
à tangente horizontale.



Nomenclature

Tu

I
fluide

de saturation

Po *ritiete
TsTcX
T=Tc

aideeoniTCTc
L+G -

Gaz

O Und( dourbe >
de VIn

rosée

3.2 .
3. Fluide supercritique

Un fluide pour TxTc est ce qu'un appelle un

fluide supercritique .

Le tride supercritique possède
à la fois les propriétés des gaz et des liquides :

- densité élevée (proche des liquides
- viscosité faible (proche d'un gazrésistenceàa

l'ecoulement - grande diffusivité (mobilité des molécules plus
grande que dans un liquidel.



Exemples et applications de fluides supecritiques

· CO2 supercritique : point critique à Tu31 %C et

P - 75 MPa J-74 · Tam)

(Ret : M
.
Liv

,
Frontiers in Energy Research 2023)

Propriétés du CO2 supercritique :

- densité similaire à des liquides (is il peut
dissoudre des substances

- viscosité proche de celle d'un gaz ( facilite
la diffusion dans des matériaux poreux)



Exemples d'applications du CO2 supercritique :

- Décatéination du caté ou du the :

En état supercritique ,
le CO2 agit comme un

solvant selectif pour la caféine, tout en épargnant
la plupart des aromes. Il a les propriétés
d'un

gaz et peut pénetver profondément
dans les grains de catés.

- Fabrication de matériaux poreux et légers
Le CO2 supercritique agit comme un plastifiant
pour réduire la température de fusion ou la viscosité

des polymères (exemple PEEK or PLA)
.

Cela permet de entre autre de créer des structures

imprimées en 3D avec une porosité contrôlée.



Notamment utilisé en biotechnologie et dans

l'aéronautique ou le bâtiment (isolation)
.

· Séchage supercritique
Procédé utilisé

pour sécher un'échantillon qui
repose sur le passage du fluide d'un état liquide
à un état supercritique, puis à un état gazeux,
sans traverser la phase de vaporisation.
Avantage : - évite les forces capillaires (associées

à l'évaporation du liquide) -> préserve
les structures fines

Applications : - séchage de tissus biologiques
- séchage de structures dans la fabrication
de dispositifs micro et nanotechnologiques



· Exemples de fluides supercritiques dans la nature

- CO2 supercritique dans la croute terrestre
Les réservoirs de CO2 sont un modele possible
pour stocker géologiquement le COz (technologie (CS)

- #20 supercritique dans des "cheminées hydrothermales"
p > 250 bars (e profondeur >500m)
T> 4002

(H20 : Py =220 bars
,
Th374: )

Fumeur noir : 120 supercritique
mélange minéraux
dissous et

gaz volcanique.

(Wikipedial

· Manip : Voyage autour du point critique du SFG



Exemple de modèle de fluide non partait :

3.3
.

Le gaz de Van der Waals

On a vu que le modèle du gaz partait ne permet
pas d'expliquer le comportement des gaz dans certains
cas.

En fait, dans la plupart des cas
,
il ya des interactions

entre molécules, appelées forces de Van der Waals.

Les interactions sont responsables de la liquetaction
a basse température or a haute pression.

Les forces d'interaction de Van der Waals dérivent
d'un potentiel (=> conservatives). L'origine de
ces forces : interactions électrostatiques entre molécules.



Potentiel de Lennard-Jones

Un

u(r) = sto)(-"(4)L·rs ro >
r

-
- do = > force attractivee

dUco = force répulsivee

3.3
.

1. Corrections du modèle du gaz partait :

gaz partait : pV = nRT

1. Correction du terme de volume : le volume occupé
par les molécules mêmes n'est pas disponible pour le
mouvement des molécules: V-> V-nb

#moles volume occupé par 1 mole



2. Correction du terme de pression : les molécules sont

sujettes à des forces d'attractions entre elles.
La pression réelle dans le gaz est plus grande
que celle mesurée par la paroi. attraction

Oo
-

p =
p + a(t)

-

Lconstante qui dépend du gaz
On a donc

Equation d'état

(p + m)(V - nb) = nRT de VanderWaals

(1873)

A montrer comme exercice : pour des

gaz dilvés (+x) ou a haute

température, haute pression, grand
volume, on retrouve la loi des

gaz parfaits .
Johannes Diderik
Van derWaals
(1837 - 1923)



3.. 3
.
2. Diagramme P-V

PrVander
Noals

TzTo&
Psat-·gaz

·G

>O Vmol,Là Psat Vmol
,
Gapsat VIn

· A-B : liquide · B-C-D-E-F : liquide + gaz
· F-G : gaz

-

SExperimentalement on observe le palier de liquétaction B-FL avec P = Psat = constante ! J
Pour trouver le palier de liquéfaction à partir de l'isotherme
de Van der Waals, on utilise la règle de Maxwell :

Règle de Maxwell : Aire BCD = Aire DEF



-
délimite lazone

instable

Source : Wikipédia

On peut montrer que pour un fluide de Van der Waals :

T=R Ve = 3b P=

Exemple pour SFj : Tc= 45
. 6%

P= 3
.

8 MPa



3.3.3. Coefficients de Van der Waals (aetb)

(p + m)(V - nb) = nRT

Dunités (molecule

· Le gaz se comporte comme un gaz parfait
si a et b - 0

· HeH ou 420 ne suivent que impartaitement l'équation
d'état de Van der Walls



Limites de l'équation d'état de Van der Waals

· Certains fluides, comme l'Hélium
,
l'hydrogène or

l'eau ne suivent pas l'équation d'état de Van derWaals.

Exp : l'eau bout à 15% à p = natm selon le modèle
de Van der Waals.

· Les propriétés critiques (Tc, Pc ,Va) sont partois
S

mal estimees

=> Il existe des améliorations du modèle
,
comme

l'équation de Peng-Robinson (1977)
.


